Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate.

نویسندگان

  • Seongho Jeon
  • Katie R Hurley
  • John C Bischof
  • Christy L Haynes
  • Christopher J Hogan
چکیده

A promising route to cancer treatment is hyperthermia, facilitated by superparamagnetic iron oxide nanoparticles (SPIONs). After exposure to an alternating external magnetic field, SPIONs generate heat, quantified by their specific absorption rate (SAR, in W g(-1) Fe). However, without surface functionalization, commercially available, high SAR SPIONs (EMG 308, Ferrotec, USA) aggregate in aqueous suspensions; this has been shown to reduce SAR. Further reduction in SAR has been observed for SPIONs in suspensions containing cells, but the origin of this further reduction has not been made clear. Here, we use image analysis methods to quantify the structures of SPION aggregates in the extra- and intracellular milieu of LNCaP cell suspensions. We couple image characterization with nanoparticle tracking analysis and SAR measurements of SPION aggregates in cell-free suspensions, to better quantify the influence of cellular uptake on SPION aggregates and ultimately its influence on SAR. We find that in both the intra- and extracellular milieu, SPION aggregates are well-described by a quasifractal model, with most aggregates having fractal dimensions in the 1.6-2.2 range. Intracellular aggregates are found to be significantly larger than extracellular aggregates and are commonly composed of more than 10(3) primary SPION particles (hence they are "superaggregates"). By using high salt concentrations to generate such superaggregates and measuring the SAR of suspensions, we confirm that it is the formation of superaggregates in the intracellular milieu that negatively impacts SAR, reducing it from above 200 W g(-1) Fe for aggregates composed of fewer than 50 primary particles to below 50 W g(-1) for superaggregates. While the underlying physical mechanism by which aggregation leads to reduction in SAR remains to be determined, the methods developed in this study provide insight into how cellular uptake influences the extent of SPION aggregation, and enable estimation of the reduction of SAR brought about via uptake induced aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment

The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...

متن کامل

Synthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment

The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

Evaluation Uptake and Translocation of Iron Oxide Nanoparticles and Its Effect on Photosynthetic Pigmentation of Chrysanthemum (Chrysanthemum morifolium) ‘Salvador’

Recently, the use of superparamagnetic iron oxide nanoparticles (SPIONS) as a new and promising source of iron in agriculture has been suggested that further investigation is needed before extensive field use. In a greenhouse experiment, the effect of coated magnetite nanoparticles with humic acid (Fe3O4/HA NPs) was investigated on iron deficiency chlorosis and photosynthesis efficiency compare...

متن کامل

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 35  شماره 

صفحات  -

تاریخ انتشار 2016